翻訳と辞書
Words near each other
・ Classical superconductor
・ Classical swine fever
・ Classical test theory
・ Classical Theatre of Harlem
・ Classical Theatre Project
・ Classical theism
・ Classical theory of growth and stagnation
・ Classical Tibetan
・ Classical tradition
・ Classical Tripos
・ Classical unified field theories
・ Classical unities
・ Classical Variations and Themes
・ Classical Voices
・ Classical Weimar (World Heritage Site)
Classical Wiener space
・ Classical World (journal)
・ Classical World Chess Championship 1995
・ Classical World Chess Championship 2000
・ Classical World Chess Championship 2004
・ Classical XY model
・ Classical-map hypernetted-chain method
・ Classical/Pops Festival
・ Classically Mild
・ Classicide
・ Classicism
・ Classicks
・ Classicomm
・ Classics
・ Classics (Ali Project EP)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Classical Wiener space : ウィキペディア英語版
Classical Wiener space

In mathematics, classical Wiener space is the collection of all continuous functions on a given domain (usually a sub-interval of the real line), taking values in a metric space (usually ''n''-dimensional Euclidean space). Classical Wiener space is useful in the study of stochastic processes whose sample paths are continuous functions. It is named after the American mathematician Norbert Wiener.
==Definition==
Consider ''E'' ⊆ R''n'' and a metric space (''M'', ''d''). The classical Wiener space ''C''(''E''; ''M'') is the space of all continuous functions ''f'' : ''E'' → ''M''. I.e. for every fixed ''t'' in ''E'',
:d(f(s), f(t)) \to 0 as | s - t | \to 0.
In almost all applications, one takes ''E'' = (''T'' ) or [0, +∞) and ''M'' = R''n'' for some ''n'' in N. For brevity, write ''C'' for ''C''([0, ''T'']; R''n''); this is a vector space. Write ''C''0 for the linear subspace consisting only of those functions that take the value zero at the infimum of the set ''E''. Many authors refer to ''C''0 as "classical Wiener space".

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Classical Wiener space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.